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In a one-step reaction the activation energies in either forward or reverse reactions cannot be negative. This 
limitation specifically excludes very wide-range linear dependences of €, upon AH. Analogously, a l l  rate constants 
have upper limits (in addition to the diffusion limit), and thus linear free energy relationships such as the Hammett or 
Brsnsted relationships, which when extrapolated lead to absurdly high rate constants, are also impossible. The 
problem of extrapolation is attacked by using a hyperbolic relationship between the logarithms of rate constants and 
equilibrium constants. In addition to satisfactory extrapolation, the treatment contains within itself the reactivity- 
selectivity principle and implies an inverse relationship between the curvature of a free energy plot and reactivity. 
The hyperbola may be related to a naive pictorial representation of the reaction co-ordinate, from which two 
measures of product-like character in the transition state ensue; one uses €, and AH, the other compares sub- 
stituent effects on rate constants and equilibrium constants. The hyperbolic relationship is compared with the 
equations used by Marcus. The treatments provide a norm for rate-equilibrium correlations of single-step reac- 
tions with transition states described as hybrids of reagent and product-like structures ; marked deviation from this 
norm is evidence of contributions of special structures in the transition state. 

the linearity or otherwise of free energy 
relationships and of alternative formal descriptions 2-4 

and causes 5-7 of non-linearity in rate-equilibrium cor- 
relations have reached voluminous proportions. The 
origin of this interest may be traced to Brmsted and 
Pedersen's demonstration of an empirical linear relation- 
ship between logarithms of rate constants and equili- 
brium constants for general acid and base catalysed 
reactions,8 and its interpretation in terms of simple 
potential energy models by Polanyi and Bell.9 The 
impetus for experimental studies of acid-base reactions, 
one of the few families of reactions for which equilibrium 
and rate constants are readily available, came from the 
introduction and application of fast reaction techniques, 
notably by Eigen,lo and from the appreciation of the 
relevance of such studies to enzymatic catalysis. In  the 
gas phase, concern with the position of the activation 
energy barrier upon a potential surface, indicated by 
direct computation or by trajectory calculations linked 
to kinetic measurements with crossed molecular beams 
or chemiluminescence, stimulated a more theoretical 
interest l1 and provided a link with the organic chemist's 
concern with reactivity and selectivity, as expressed 
in the well known papers of Hammond and Leffler.12.13 
Of special importance, however, has been Marcus' 
application of his treatment of electron transfer re- 
actions 14 to correlations of rates and equilibria for 
hydrogen and proton transfer reactions,15 a treatment 
now extended to methyl transfer reactions.16 

In this discussion two quite simple points deserve 
further consideration. One concerns the influence of 
limiting values of activation energies and rate constants 
upon the scope of linear free energy relationships, and 
the other the analytical form of the simplest treatment of 
non-linear relationships. 

Extrapolation Limits  to Linear Free Energy Relation- 
shi@s.-Figures 1 and 2 illustrate a straightforward 
argument that linear free energy relationships between 
rate and equilibrium constants or the related linear 

relationship between activation energies (EJ  and 
enthalpies of reaction ( A H ) ,  are impossible over a very 
wide range. Figure 1 shows a plot of E,  zle~sus A H ,  

I 

Impossible, €2 < 0 
AH 

I 
I 
I 

FIGURE 1 A diagram showing the allowed region of a plot of 
activation energy against overall enthalpy change for a one- 
step reaction, demonstrating that no straight line can stay 
everywhere in the allowed region. The curve shown [equation 
(l)] is a possible relationship 

with E,+ and E,- denoting activation energies for for- 
ward and reverse reactions, respectively. The require- 
ment that E,+ be positive provides a lower limit for E,+ 

I log k4'k+max. 
I 

Impossible, Log k'>Log k'max. 

FIGURE 2 A plot of log k+ vevsus log K,, showing the con- 
sequences of the existence of upper limits (k+,a,. and k-max.) for 
rate constants of any order. Straight lines are clearly impos- 
sible; a possible relationship is shown 
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for all values of AH,  while the similar requirement for 
Ea- and the relationship AH = Ea+ - E,- gives the 
further limit E,+ 2 AH.  These limits imply ' impos- 
sible' regions for a plot of E,  versus AH as shown in 
Figure 1, and it is clear that no infinite straight line 
dependence of E ,  upon AH can fit the allowed region. 

Figure 2 shows a log-log plot of rate constants ( k )  
VCYSUS equilibrium constants (Keg)  with limits similar to 
those of Figure 1. Thus the rate constant in the forward 
direction k+  cannot exceed some maximum value k+,,., 
while the other limit is determined by the maximum 
value of the rate constant in the reverse direction kWrnax.. 
Again an infinite straight line must exceed at least one of 
the limits. The maximum rate constants may be 
identified with the Arrhenius pre-exponential factors. 
For each molecularity the pre-exponential factor has an 
upper limit and no rate constant can be greater than this. 
If for the series of reactions considered Arrhenius A 
factors for the forward and reverse reactions are constant 
we can identify A +  with kf,,ax. and A -  with krnaX, and 
the two representations are readily shown to be equiva- 
lent. 

A Hyperbolic Free Energy Relationshi$.-Apparently 
linear free energy relationships which become nonsense 
when extrapolated can be made acceptable by intro- 
ducing a small curvature. Figure 2 illustrates an 
idealised dependence of log k+ upon log K,, in which log 
k+ varies smoothly between its limits, thus avoiding the 
impossible extrapolations. 

The analytical form of this relationship cannot now be 
established experimentally; l7 indeed it is a major 
problem to show that experimental points are better 
fitted by a curve than a straight line. The commonly 
used expressions introduced and applied by Marcus to 
hydrogen atom and proton transfer reactions have been 
justified by being derived from simple reaction m0de1s.l~ 
By contrast we have chosen a familiar analytical expres- 
sion consistent with the required limits, and found that it 
leads to a convenient and plausible formalism usefully 
compared with that of Marcus. Other approaches to 
this expression due to Agmon and Miller are noted below. 

The curves shown in Figures 1 and 2 are actually 
hyperbolae 18 ( y 2  - xy - c2 = 0). Figure 1 shows the 
positive branch of the hyperbola of equation (1) with 
asymptotes Ea = 0 and E,  = AH.  The constant c is the 

E,(E, - A H )  = c2 (1)  
activation energy, Ea, when AH = 0 and corresponds to 
Marcus' intrinsic kinetic barrier (A) for the reaction 
series. The equation expresses the combined influence 
of the kinetic barrier (or inertial') and the thermo- 
dynamics of a reaction in determining reactivity. For a 
nearly thermoneutral reaction the kinetic barrier domi- 
nates the activation energy and for a strongly exo- or 
endo-thermic reaction the barrier approaches the thermo- 
dynamic difference between reactants and products in 
one direction and zero in the other. 

In the rate constant form of the relationship the 
negative branch of the hyperbola of equation (2) is used. 

In  this equation the division by K+max. makes the first 
factor independent of the choice of units, as does the 
k-max./k+mx. factor in the second; it also makes the x 
axis ( y  = 0) an asymptote, in contrast to the simple plot 
of log k against log K,, in which the asymptote is y = 
log k+,,,.. In equation (2) c is dimensionless; it is the 

counterpart of c in equation (1) but differs in magnitude 
and sign. The equation may be converted to a free 
energy form (commonly used in Marcus' equations for 
solution reactions) by taking Kfmax.  = kmaX. = kT/lz and 
substituting AG = -RTlnK,, and AG.' = -RiTlnk/ 
(kT/h),* to give again the negative branch of the hyper- 
bola. For reactions in solution equation (2) may be 
extended in the usual way to include diffusion steps and 
the ' work terms ', OR and up, introduced by Marcus l4,l5 

to take account of solvation and other changes preceding 
or following the proton transfer step.19 

The curvature of the hyperbola as of the corresponding 
Marcus equations is controlled by the intrinsic barrier c. 
To the question, ' why is curvature not seen in ordinary 
Hammett plots?,' several answers may be given. First, 
the range of a typical Hammett plot is relatively small. 
For a variation of G of one unit the range of equilibrium 
constants is rarely greater than 10 000 which is usually 
insufficient to see curvature, especially where the data 
show experimental and chemical scatter. For larger 
ranges of equilibrium constant the Hammett correlation 
may include a second parameter, as in the Yukawa- 
Tsuno equation, which has the incidental effect of 
correcting for curvature, Moreover, most reactions 
listed in compilations (for example that of Jaff4 20) have 
rate constants not much larger than the order of 
s-l or 1 mol-l s-l. In terms of the hyperbola this implies 
large values of c or that the reaction falls far to the left in 
Figure 2. The curvature of the hyperbola is inversely 
proportional to c and along a reaction series is maximised 
for the thermoneutral reaction. Thus detectable curv- 
ature is to be expected only for fast reactions that are 
approximately therm~neutral ,~ or, possibly, for slower 
reactions combining a low intrinsic barrier with large 
work terms. There are relatively few examples of these 
and where they occur the interpretation of curvature 
may be complicated by the influence of diffusion steps6 

Reactivity and Selectivity .-The slope of the hyperbola 
varies continuously from 0 to 1 between the limits of 
high and low reactivity. The slope represents the 
selectivity of the reaction (relative to the ' equilibrium ' 
selectivity), and this behaviour corresponds to the normal 
inverse relationship between reactivity and selectivity. 
Differentiation of equation (1) gives the expression for 
the slope shown in equation (3) which we denote p.21 

(3) 
E a  

d m = p =  2E, - AH 
* Strictly k+,nax. = kmmaX. = e h S S / R  kTlh. The usual assumption 

that AGt -to in these limits implies the simpler identity given. 
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For reactions in solution the rate constant expression 

corresponding to (3) is complicated by limiting rate 
constants and associated work terms. However in 
solution the slope may be obtained independently if rate 
and equilibrium constants can be expressed as linear free 
energy relationships. For proton transfer reactions it 
corresponds to the exponent of the Bronsted relationship 
ct and, if log k ,  and log K,, obey the Haminett relation- 
ship, to the ratio of kinetic and equilibrium reaction 
constants (4). Comparison of these two measures of 
selectivity is straightforward and of interest. 

t 4) 
d log k+ - p t  
dlogK,, - p.9 

Identification of p with the progress of bond-making 
and -breaking at  the transition state l3 leads to a simple 
but plausible dependence of barrier location along a one- 
dimensional reaction co-ordinate upon activation energy 
and energy of reaction consistent with Hammond’s 
postulate.12 The implied energy diagrams can be con- 
structed quite simply in the manner shown in Figure 3. 

-AH- 

FIGURE 3 The construction of simple energy veys’us reaction 
co-ordinate diagrams for an endothermic reaction ( a )  and an 
exothermic reaction ( b )  consistent with 9 = Ea/(2Ea - A H )  as 
a measure of the position of the transition state along the 
reaction co-ordinate is obvious 

Starting with the reactant a t  an arbitrary energy and 
position, a line of slope +1  is drawn until the energy of 
the transition state is reached (given by E J .  Then 
another line of slope -1 is drawn until the energy of the 
product is reached (determined by AH) .  Examples for 
positive and negative A H  are shown. The fraction of the 
distance from reagent to product along the horizontal 
reaction co-ordinate that the transition state lies is 
clearly E,/(2E, - AH) .  The diagrams should properly 
involve potential energies but as usual the experimental 
quantities are AG or A H  at temperatures near or above 
300 K. 

Interestingly, equation (3) and the diagrams of Figure 
3 have an optical analogue in the application of Fermat’s 
principle 22 to reflection, as has been pointed out by 
Agmon.2 With the reactant and products at an arbit- 
rary separation, minimisation of the potential energy 
path from reactants to transition state to products 

consistent with E,  and A H  yields equation (3) directly. 
This ‘ derivation ’ of (3) has been generalised by Miller 
to non-linear energy profiles using an arc minimisation 
theorem.23 More recently, Agmon and Levine have 
derived equation (3) by analogy with a resonance com- 
bination of valence bond wave functions corresponding 
to the structures of reactants and products.24 They also 
note the previous empirical application of the equation 
by Rehm and Weller to fluorescence quenching.25 Thus 
equation (3) has been used quite extensively, without 
its connection with the hyperbola generally being noted. 

Comparisons with Other Treatments.-Equations (1)- 
(4) as descriptions of rate-equilibrium relationships are 
recommended by their correct limits, simplicity, and 
convenience. Other equations have been proposed, 
however ,3349 99 11, l59 26 on similar grounds ,26 using alter- 
native analogiesJ4 or from relationships to simple reaction 

Chief among these are Marcus’ equations 
shown as (5 )  and (6), in their commonly used free energy 
forms, together with the corresponding hyperbolic 
expression (7). The quadratic equation (5) comes from 

11* l4 

2 
AGI = c ( 1  + g) 

AG c In cosh (c) AG In 2 (6) 
AGt = c + 2 + 

(7) 
AG ~ A G Z +  4 ~ 2  

AG1 = - 2 + -2- 

Marcus’ electrostatic model for electron transfer reactions 
and (6) is obtained from a simplified BEBO treatment 
or, as Agmon and Levine ~ugges t ,~  from analogy with 
the thermodynamics of ‘ mixing ’ of reactants and pro- 
ducts. The quadratic equation lacks asymptotic limits 
and is confined to the range 4c  > AG > -4c for reactions 
not subject to diffusion contr01.l~ Extensive comparison 
of the hyperbolic equations (1)-(3) with experimental 
data 24927 and semi-empirical or ab irtitio calculations of 
potential energy surfaces 23 testify to their effectiveness, 
but not to an advantage over a l t e r n a t i ~ e s . ~ ~ ~ ~ ~ ~ ~ 3 ~ ~ ~  

A simple comparison of the hyperbolic and Marcus 
equations is achieved by expanding equations (1) or 
(6) as polynomials to the second degree about A H  (AG) = 
0. The result is shown for the hyperbola and Marcus’ 
quadratic and BEBO expressions in equations (8)-(10) , 
respectively; the kinetic variable (E,  or AG:) is denoted 
y and the thermodynamic variable ( A H  or AG) is denoted 
x. It is apparent that the first two terms are the same 

(9) 

in each equation, and that the quadratic coefficients, 
which determine the curvature of the relationships, are 
all inverselv dependent upon the intrinsic barrier c. 
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However, the magnitudes of the quadratic coefficients 
differ. Where an intrinsic barrier is determined experi- 
mentally from the curvature of a rate-equilibrium 
relationship, therefore,19 the value will depend upon the 
equation used; that from the hyperbola (8) for example 
being twice that from the usual Marcus equation (9). 
Differences in coefficients higher than the quadratic are 
unimportant because the curvature is not well enough 
defined. 

A lower limit can be put on the quadratic coefficients 
because the plots x us. y should not cross impossible 
regions of Figures 1 and 2, i .e.  y must be > O  for all 
values of x. I t  is easy to show that this condition is 
fulfilled when the quadratic coefficient >1/16c, and it 
follows that Marcus’ simpler equation (9) provides a 
lower limit for and indeed must underestimate the 

In principle the barrier may have any value 
greater than this limit and less than the measured 
or extrapolated value of y at  x = 0 (in solution, work 
terms may add to the intrinsic barrier). In practice 
equations (8) and (10) probably provide reasonable 
values 1 5 9  17* 18* 239 279 29 and indeed experimental uncer- 
tainties and chemical dispersion make differences 
between (8)-( 10) normally of minor importance in 
practice,15 save perhaps in assessing the effect of diffusion 
steps on curvature.6 

A further comparison comes from writing AG: as a 
function of a (or p) = dAGI/dAG, the progress variable 
taken to describe the position of the transition state 
along the reaction co-ordinate. Equations (1 1)-( 13) 
show expressions for the hyperbola and for Marcus’ 
quadratic and BEBO equations; between the extremes 

* 

AGI = aAG + 2at(l - a)*c 

AGX = RAG + 4a(l - ( X ) C  

AGX = aAG - c[alna + (1 - ct)ln(l -a)]/ln2 (13) 
of exo- and endo-thermic reactions a varies between 0 and 
1 and in all cases, AGI = c, the intrinsic barrier for the 
reaction, at cc = 0.5. I t  may be noted that for a quad- 
ratic relationship these conditions are met only for 
Marcus’ choice of quadratic coefficient, i .e. 2116~ in 
equation (5 ) .  Kurz’s recent discussion suggests indeed 
that the ‘ correct ’ behaviour of equation (12) could be 
regarded as the theoretical basis of equation (5), 

A last comparison is between expressions for the pro- 
gress variables themselves. Here, the hyperbolic equ- 
ation (3) [rewritten as (14)] shows an advantage. 
Marcus’ quadratic equation leads to incorrect limits 

== 1/(2 - AG/AGl) (1 4) 

(15) a = + + AG/8c 

a = l/[l + exp(*)] (16) 

(15), while in contrast to the simplicity of (14), solution 
of the BEBO expression (16) requires a prior evaluation 

* Correspondingly for a given barrier Marcus’ equation (8) 
leads to the maximum curvature for a rate-equilibrium relation- 
ship. 

of c from (6) by iteration. The usefulness of p of 
equation (3) as a ready reckoner of bond-making and 
-breaking at the transition state, especially for atom 
transfer reactions has been emphasised previou~ly .~*1~~ 213.*3 

Scope and Limitations.-A major function of a rate- 
equilibrium relationship is to describe a normal or ideal 
behaviour and to identify and estimate deviations from 
it. Normal behaviour is that expected of a series of 
reactions with a constant intrinsic barrier and transition 
states completely describable as hybrids of reagent- 
and product-like structures (called by Levine a 
‘ Brgnsted Series ’ 17). Marcus has given reasons for 
expecting such behaviour for proton transfers between a 
single carbon base and a series of oxygen and nitrogen 
ba~es .*~?~O Thus it appears that normal behaviour is 
attainable in practice in a commonly studied rate- 
equilibrium correlation. 7 

Departures from normal behaviour will occur if the 
intrinsic barrier itself is a function of structure within a 
reaction series. Such departures are indicated (i) by a 
failure of E,  to correlate with AH; (ii) by values of 
a (or p+/peq) that are negative or greater than unity (as 
in arylnitroethanes 7.31) ,  or which do not lie between 0 
and 4 for thermodynamically favourable reactions or 
between and 1 for unfavourable reactions; 7 or (iii) 
when p+ does not lie between zero and pes (as in E2 
eliminations 32). These abnormalities may indicate that 
the reaction has more than one step, but usually they 
represent variations in intrinsic barrier (or possibly work 
terms 7, and have been commonly interpreted as arising 
from contributions of special structures, i.e. other than 
of reactants and products to the transition state. Such 
structures, which may be less f avourable resonance 
forms of reactants and products or intermediates of 
higher energy reaction pathways, have been included on 
potential energy diagrams using linea1-,~3 quadra t i~ ,3~  or 
semiempirical multidimensional surfaces.35 

The diagrams of Figure 3 may similarly be extended to 
include special transition state structures. Here, how- 
ever, we wish to emphasise the form of the hyperbola as an 
intuitively attractive representation of the simplest of 
non-linear rate-equilibrium relationships. Comparison 
with the corresponding Marcus formalism indicates the 
complementary virtues of the treatments. Marcus’ 
quadratic expression (5) offers a compromise between 
analytical convenience and chemical significance. The 
hyperbola is arbitrary, but it combines analytical 
simplicity with a self-consistency deriving from correct 
handling of rate limits. Where attention to limits is 
important it offers an attractive alternative to the less 
straightforward BEBO relationship. In particular, 
the expression fi = E,/(2EiL - AH) should be useful. 
In the gas phase or for free radical reactions in solution 
it provides a measure of the location of an energy barrier 
along a reaction co-ordinate, and for ionic reactions in 
solution, where solvation may complicate interpretation, 

Practical difficulties of measuring curvature remain, e .g .  of 
finding a structurally homogeneous family of 0 or N acids 
covering a wide range of pK,. 



J.C.S. Perkin I1 
it may be compared-with the direct measurement of the 
slope of a rate-equilibrium correlation by the Brmsted 
coefficient or p+/pes. 
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